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EDGE-ADJACENCY IN GRAPHS

Cilem YAMAC *', Mert Sinan OZ ! and Ismail Naci CANGUL!

'Uludag University, Faculty of Arts and Science, Department of Mathematics, 16059
Bursa-TURKEY

Abstract

Energy of a graph was defined by E. Hiickel as the sum of absolute values of the cigenval-
ues of the adjacency matrix during his search to find a method to obtain approximate solutions
of Schrodinger equation for a class of organic molecules. It is an important sub-area of graph
theory called spectral graph theory. Schrodinger equation is a second order differential equa-
tion which includes the energy of the corresponding system and as we can model all molecules
with graphs, we can calculate the energy of a given graph. Here we obtain the exact formu-
lae and recurrence relations for the edge-characteristic and incidency polynomials of some
well-known graph classes.

1 Introduction

123

Let G = (V, E) be a simple connected graph, that is G is a graph with no loops nor multiple
edges. Two vertices u and v of G are called adjacent if there is an edge e of GG connecting « to v.
If G has n vertices v1, v, - - -, Un, We can form an n x n matrix A = (a;;) by

S 1, if v; and v are adjacent
* 0, otherwise.

This matrix is called the adjacency matrix of the graph GG. The set of all eigenvalues of the
adjacency matrix A is called the spectrum of the graph G, denoted by S(G). These eigenvalues are
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also called the eigenvalues of the graph G.

As well-known, the eigenvalues \j, \a, ..., A, of a square n x n matrix A are the roots of the
equation |[A — \I,| = 0. The polynomial on the left hand side of this equation is called the charac-
teristic polynomial of A (and of the graph G with a slight abuse of language). This polynomial is
sometimes called as the spectral polynomial of G.

The sum of absolute values of the eigenvalues of G is called the energy of GG, which is an im-
portant aspect for the subfield of graph theory called spectral graph theory, see [1], [5], [3], [6], [8],
(91, [10].

As usual, we denote path, cycle, star, complete and complete bipartite graphs by P,,, C,, Sy,
K,, and K, ,, respectively.

The spectrum of some graph types including path, cycle, star, complete and complete bipartite
graphs are known in literature, [4], [3], [2]. The spectrum of path and cycle graphs show differ-
ences with the other graph types as they can be stated in terms of roots of unity. The spectrum of
these graph types by means of the characteristic polynomial are obtained in detail in [4].

Similarly to the notion of vertex-adjacency, we shall study the parallel notions of edge-adjacency
and incidency. We shall give exact formulae for the edge-characteristic polynomials and also some
recurrence relations. We find that the sum of the coefficients of the edge-characteristic polynomi-
als of the path and cycle graphs are obtained in modulo 6. We also give some relations between
the vertex-characteristic and edge-characteristic polynomials. . We finally obtain some incidency
polynomials which do not exists always.

An important and obvious relation between the edge-adjacency and vertex adjacency is given
by means of the line graph L(G) of G as follows, [7]:

Lemma 1.1. The edge-adjacency matrix of a graph G is identical to the vertex-adjacency matrix
of the corresponding line graph L(G) of G. That is,

A%(G) = AY(L(G)).

2 Edge-adjacency matrices and polynomials

Let G be a simple connected graph having n vertices and m edges. The (vertex) adjacency
matrix A of G is a square n X n matrix A = [a;j]nxn determined by the adjacency of vertices as
follows:

0 — 1, if the vertices v; and v; are adjacent
77| 0, otherwise.
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Figure 1: A graph G

The adjacency matrix is used in many areas of graph theory and also in molecular chemistry.
The sum of the absolute values of the eigenvalues of the adjacency matrix gives the energy of a
graph G. Therefore the adjacency matrix and related notions for adjacency are frequently used in
many areas. In this paper we shall study some similar matrices corresponding to graphs.

The edge-adjacency matrix A° of G is a square m X m matrix A® = [a;]mxm determined by
the adjacency of edges as follows:

1, ifthe edges e; and e; are adjacent
afj = 0

otherwise.

0 1 0 0 0 00 0 0 0]
101 010O0O0O01
01 01100O0O0T1
0010110000

AC — 0111010001
0001101O0O0T0
00 0O0O0OT1O0T1O0TO0
00 00O0OO0OT1TO0T1FPO0
000O0O0OOO0ODT1O0T1
01101 00 0 1 0]

In Figure 1, there is a graph G with 10 labelled edges and its edge-adjaceny matrix is given
above. Although the vertex-adjacency matrix of non-isomorphic graphs must be different, edge-
adjacency matrices of non-isomorphic graphs could be the same. For example the graphs in Figure
2 both have the same edge adjacency matrix.
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Figure 2: Non-isomorphic graphs having same edge-adjacency matrix

In the literature, when one mentions the characteristic equation corresponding to a graph G, it is
commonly understood that one is dealing with the adjacency matrix A(G). As we shall study
the characteristic polynomials corresponding to the edge-adjacency matrix A°, we shall denote
the edge-adjacency polynomial obtained by calculating the characteristic polynomial of the edge-
adjacency matrix by Pg () to differ them from vertex-adjacency polynomials. First we start with
the path graph P,,. We have

Theorem 2.1. The recurrence relation for the edge-characteristic polynomial of the path graph P,
obtained by means of the edge-adjacency matrix is

Pp,(N) = APp, () = Pp,,(A).

Proof. The edge-adjacency matrix of P, is

(01 0 00 0 0 0]
10100 000
01010 000

AY(P,) = 00101 000
00 00O 1 01
00 0 00 0 1 0]

And characteristic polynomial of A°(P,) is
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A -1 0 0 O 0o 0 O

-1 2 -1 0 0 0o 0 0

0 -1 x -1 0 0 0 0

INT — AS(Py)| = 0 0 -1 x -1 0 0 0

6o o 0 o 0 .. -1 Xx -1

o o 0 0o 0 .. 0 -1 X

If we calculate this determinant according to the first row, we get
-1 -1 0 0 0 0
0 X -1 0 0 0
0o -1 x -1 0 0
0 0 -1 X 0 0
NI —A(P,)|] = APp (A +1

o o 0 0 .. x -1
0o o o0 o0 .. -1 A\

= APp (N -Pp (N

when we calculate this last determinant according to the first column.
|

The first few edge-characteristic polynomials corresponding to the path graphs can easily be
obtained by means of the recurrence formula as

PR(A) = NM-1

P (A) = M =2\
Pp(A) = M=33-1
Pp(A) = AN —4xX 43

We can now obtain the formula for the edge-characteristic polynomial corresponding to the
path graph P,. We first need the following result:

Lemma 2.1. For all positive integers k and n such that k < n, we have

(Z) ’ <,£1> - <n21>

361
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Proof. By the combinatorial properties of combination numbers, we have

n n _ n! n!
W+ 065 = wlom T e
nl(n+1)
(k1)1
(n+1)!
A

= ().

Theorem 2.2. -
S 2 SV A2 s odd
P (\) =

n-2
>0 (—1)l("_ll_l)>\”_1_21, n is even.
Proof. We shall use strong induction. Let n be odd.

P = X-1

3

= Zf (,1)l(3—l1—l))\3—1—21

Let the statement be verified for 3, 4, 5, ---, n — 1, n. Then we want to prove that it is
verified for n + 1.

o

By the induction hypothesis, we know that

e _\ n—1-10\_, | . 2 N2\
PPnZZ(—l)l( ! ))\ 120 and PPn_lzz(_l)l( l >)\ 2-2

=0 =0
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= A [(_1)0(7161))\11—1 + (_1)1 (nIZ))\n—B + (_1)2(n53))\n—5 + (_1)3(7154) An—7

n1 QI)AO} — (=D A2 4 (— () e

LRGN (1B (TGN 4 (-1 (TR

DT (LT )A

So we get
boiy = APH,(N) =P (\)
2t I(n—1-1y \n—1-21 N [ (n—2—1y \n—2-21
= (S e ) - (S e e)
+"'+(*l)nTA(7l_1;";
2
= (DA DA
n—1
= S Ve
by Lemma 2.1.

Let now n be even.

Ppo= X2

= DN+ EDIEA

4

Let the statement be verified for 3, 4,
verified for n + 1.

By the induction hypothesis, we know that

n—2

- -1-1
PI%"=Z(—1)Z(” z ))\"_1_2l and Pf,

=0

= T U
5a

= ()

h ))\4—1—21

.-+, n — 1, n. Then we want to prove that it is

n—2

l) )\71—2—21‘

=0
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So we get

Py = APj(\)- P (A

_ <Z§j (_1)1(71—}71)/\'@—1—%) _ (Zl"joz (_1)z(nfl271)>\n—2—25>

n—2

— (71)0(71,61))\71 + (41)1(71,;1))\11—2 S (71)% (E))‘O
= OGN DT (C1)E (X0

— Zlg_:o(*l)l (nl—l) /\n—2l7

by Lemma 2.1.
O

Theorem 2.3. The recurrence relation for the edge-characteristic polynomial of the cycle graph
C., obtained by means of the edge-adjacency matrix is

PE (N = AP () — Ph (N - 2.

Proof. First note that

A -1 -1
PE(N) = -1 A 1
-1 -1 A

A -1 1 -1

I
>
=
S
+

|
>

|
=

|
-
+
=
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and
A -1 0 -1
. 1 A —1 0
ey = 1o 21 a1
10 -1 A
A -1 0] -1 -1 0] |-1 A -1
— Al=1 A —14l0 A —1f+l0 -1 A
0 -1 A| |=1 -1 A| |-1 0o -1
0 -1 -1 A
o R R R B P B A
= PR —2PE (N - 11
= APL(N) 2P () - 2.
Similarly
A -1 0 0 -1
1A -1 0 0
PE(Y) = |0 -1 A -1 0
0 0 -1 A -1
10 0 -1 A
1 -1 0 0] |1 A -1 0
0 A -1 0| [0 -1 A -1
= MR 0 S0 0 -1 A
10 -1 A |-1 0 o0 -1
0 -1 0| |-1 A -1

= APH(A) - Pe N +[0 A 140 —1 A|-Ps(N)
~1 -1 A\ 0 0 -1

. c 0 -1
= a2+ -

= APH(N) —2P5(\) —1-1

= AP§(\) —2P5 (A) — 2.

Proceeding similarly, first we have to take determinant with respect to first row. Then we have
Py, (X) and two determinants coming from the submatrix of P§ (). And we take the determinant
of last matrix with respect to first column and take determinant of former matrix with respect to first
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row. From the determinant of last matrix, we have an upper triangular matrix whose determinant
is -1 and another matrix giving —Pf (). From the determinant of the former matrix, we have
—P% (\) and a matrix. So if we take determinant of the matrix with respect to first row until

-1 . .
. So it is equal to -1. The summation of terms

reaching a number, finally we will have —01 \

gives
P& (N) = APp (N) —2Pp  (A\) —2.

d

We know the formula of P, (). So if we use it, then we can have the formula for P§ (), as
follows:

Theorem 2.4. The formula for the edge-characteristic polynomial of the cycle graph C,, is

3
N}

3 n—-2
2 __1 o 2 __24_
P& (N) =) (—1)l<n I l))\"12l—22(—1)1(n ; l>)\"221—2 if n is even,
1=0

=

o

and

n—1 n—3
- —1-1 R —2-1

Pg (N =AY (-1) (" l )A“”lz > (-1 (" l )A"“lz ifn is odd.
=0 =0

The following two results prove that the sum of the coefficients of Pp, and Pf have a special
form in modulo 6:

Theorem 2.5.
0, n=0(6)andn =3 (6)
Pg (1) = 1, n=1(6)andn =2 (6)
—-1, n=4(6)andn =5 (6)
Theorem 2.6.
0, n=0(6)
. ) -1, n=1(6)andn =5 (6)
Fe, (1) = -3, n=2(6)andn = 4 (6)
-4, n=3(6)

Theorem 2.7. The recurrence formula for the edge-characteristic polynomial of the star graph Sy,
is
Ps (N =AP5 (N — (n—2)(A+1)"2,
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Proof. Edge adjacency matrix of the star graph having n vertices can be obtained in the form

0 1 1 17
10 11
A(Sn) =
11 01
(1 1 - 1 0] (n—1)x(n—1)
Characteristic polynomial of A°(S,,) is
Ao -1 o -1 -1
-1 x - =1 -1
AT — A°(Sp)| =
~1 =1 - A -1
~1 =1 - -1 A

(n—1)x(n—1)

If we use determinant rule with respect to first row then it will give three determinants of size

(n—2)x(n-—2)

-1 -1 - -1 -1
P () =APS |+ (—1)'"2.(-1) o
-1 -1 - X -1
-1 -1 - =1 X
-1 x - -1 -1 -1
FEDFRED T T T ek G
-1 -1 -+ x -1 -1
-1 -1 -+ =1 A -1
and then if we apply elemantary row operations to the determinants
-1 -1 - -1 -1 -1 x - -1 -1 -1
-1 -1 - X -1 -1 -1 - x -1 -1

~1 -1 -+ =1 A ~1 -1 -+ =1 A —1

A -1 -1
—1 e —1 A
-1 . -1 -1
A -1 -1
—1 e —1 A
-1 ... -1 -1

367
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we get
-1 -1 -+ -1 -1
-1 X - -1 -1
Pgﬂ()\) = )\P§n—1 + (n - 2)
-1 -1 - X -1
-1 -1 - =1 A (n—2)x (n—2)

as all the determinants are the same. In this last matrix, if we use the row operations
Ry - Ry — Ry, R3 -+ R3 — Ry, -, Ry, = R, — Ry,

then it will be in the form

s |
0 A1 -~ -1 -1
0 0 -+ Al -1
0 0 - 0 A+l

(n—2)x(n—2)

So it is equal to (—1)(\ + 1)"~3. Hence

PE (N =AP5 (A — (n—2)(A+1)"3.

Theorem 2.8. The edge-characteristic polynomial of the star graph Sy, is
PS5 ()=~ (n—2)]A+1)"2,

Proof. Edge adjacency matrix of star graph with n vertices is in the form

01 11
1 0 11
P§ (N =|.
11 01
11 10 (n—1)x(n—1)

Characteristic polynomial of A°(S),) is
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Ao -1 . -1 -1
-1 A - =1 -1
AL — A®(Sy)| =
-1 -1 -+ X -1
-1 -1 -1 A (n—1)x(n—1)

Let us use elementary operations which are firstly Ry — Ry + Ra + R3 + --- + R, _1, then
the matrix will be

A-n—=2) A-(n—-2) -+ A-(n—-2) A—(n-2)
-1 A -1 -1
-1 -1 A -1
-1 -1 -1 A

After that from the determinant property, it is equal to

1 1 - 1 1
1 A e =1 -1
A —(n—2)]
~1 -1 -« A -1
~1 =1 -+ —1 A

(n—1)x(n—1)

and if we apply Ro — Ro + Ry, R3 - R3+ Ry, -+, R,-1 — R,_1+ Rj, then we have

1 1 1 1
0 A+1 - 0
=(A+1)2),
0 0 - A+1 0
0 0 0 A+1

(n—1)x(n-1)
Hence
PS (N =~ (n—2))A+1)"2,

n

369
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The following results can be obtained similarly to the above results:

Theorem 2.9. The recurrence relation for the edge-characteristic polynomial of the tadpole graph
T} s obtained by means of the edge-adjacency matrix is

APE (N =P (V) s# 1,2

®»
Il
n

Pf, (A =q AP, (A) = P&, (N),

APE (N) —2Pp (A) —2P (M) -2, s=1
Theorem 2.10. The edge-characteristic polynomial of the complete graph K,, is

(A =2)(A+1)2, n=3
Pi, (V) = ]
A —2n—2))A— (n—4)" 1A +2) B n£3.

Theorem 2.11. The edge-characteristic polynomial of the complete bipartite graph K, s is
P (N =MW—s—1+2)A-s+2" A —r+2)° (A 4+2) D6

The following results giving some relations between edge-adjacency and vertex-adjacency
polynomials can be obtained directly from the above results and their proofs will be omitted:

Theorem 2.12. P§ (\) = P§ ().
Theorem 2.13. P¢ (\) = P, ()).
Theorem 2.14. Pj; (\) = P§  ()).
Theorem 2.15. P (\) = P ().

3 Incidency matrices and polynomials

Up to now, we have studied the vertex-characteristic and edge-characteristic polynomials. As
well known, the former ones play a very important role in spectral graph theory in calculation of
the energy of a given graph. Finally, we study the incidency polynomials. Recall that if e = uv
is an edge of a graph G, then e is said to be incident to the vertices v and v in G. The incidency
matrix A’(G) is defined as an m x n matrix. A*(G) = [a;;]mxn determined by the incidency of
edges and vertices as follows:

a — 1, if the vertex v; is incident to the edge e;
K 0, otherwise.
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Now we shall calculate the formulae and recurrence relations for the incidency polynomials.

As the incidency matrix for a given graph G need not be a square matrix, it is not possible
to calculate the incidency polynomial of all graphs. The following are few examples to those
graphs whose incidency matrix is a square matrix and hence whose incidency polynomials can be
calculated:

Lemma 3.1. If we divide a matrix into four block matrices

<t
C|B
where A and B are square matrices, the determinant of this matrix is equal to ‘A‘ ‘B ‘ .
By means of this lemma, we can obtain the recurrence relation for tadpole graphs:
Theorem 3.1. The incidency polynomial of the tadpole graph T,  is
I, ,(A) = (A= 1)°Ie, (A).

Proof. Incidency matrix of the tadpole grapf T  is in the form

1, ifi=j
o — 1, ifi—j5=1
YY1, ifi=s+1l,j=r+s
0, otherwise.

Let us divide the matrix A*(7}. ;) into the block matrices as below:

1000 -+ 00[00 0 00
1100 -+ 00[00 0 00
0110 0 0[00 0 00
0000 1 1/00 0 00

i 0000 0 11 0 0 1

AT =19 0 0 0 0 0[1 1 00
0000 0 0[0 1 00
0000 0 0[0 0 00
0000 0 0[0 0 10
(0000 0 0[0 0 11|

371
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and
A-1 0 0 0 0 0 0 0 0 0 0
1 A—-1 0 0 0 0 0 0 0 0 0
0 1 A-10 0 0 0 0 0 0 0
0 0 0 0 1 A-1] 0 0O 0 0 0
7o 0 0 0 0 L |x_1 0 0 1
NI=A(T )l =] 0 0 0 0 0 1 A1 0 0
0 0 0 0 0 0 0 ~1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 -~ 0 0 0 0 -~ A—1 0
0 0 0 0 - 0 0 0 0 - -1 A-1

We have seen that the determinant of upper-left block matrix is (A — 1)® and the determinant
of lower-right block matrix is I, (\). Hence from Lemma 3.1,

AT = Al = (A= 1)°Ic, (M)

The following two results can be proven similarly:
Theorem 3.2. The incidency polynomial of the cycle graph C,, is
I, () = (A—1)" —1
Theorem 3.3. The incidency polynomial of the complete bipartite graph Ko o is

IK24,2 ()‘) = (/\ - 2)()\ - 1))\2~
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